Decomposing the SWAP quantum gate

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2006 J. Phys. A: Math. Gen. 391463
(http://iopscience.iop.org/0305-4470/39/6/018)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.108
The article was downloaded on 03/06/2010 at 04:59

Please note that terms and conditions apply.

Decomposing the SWAP quantum gate

Y Hardy and W-H Steeb
International School for Scientific Computing, University of Johannesburg, Auckland Park 2006, South Africa
E-mail: yha@na.rau.ac.za

Received 6 October 2005, in final form 28 November 2005
Published 25 January 2006
Online at stacks.iop.org/JPhysA/39/1463

Abstract

Quantum gates are represented by unitary operators on a Hilbert space. We consider the unitary operators on $\mathcal{H} \otimes \mathbf{C}^{2}$ and describe the component operators on each Hilbert space in the product space. From these criteria we derive a decomposition for a specific class of unitary operators such that each operator in the product has Schmidt rank bounded by 2 . This decomposition directly yields the XOR (controlled NOT) implementation of the SWAP operation.

PACS numbers: 03.65.Db, 03.67.-a

1. Introduction

Quantum gates are represented by unitary operators on a Hilbert space [1-3]. For completeness, we present the definitions of the Schmidt rank for states and operators below.

Let \mathcal{H}_{A} and \mathcal{H}_{B} be two finite dimensional Hilbert spaces with the underlying field \mathbf{C}. Let $|\psi\rangle$ denote a pure state in the Hilbert space $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$.

The Schmidt number (also called the Schmidt rank) of $|\psi\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{B}$ over $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ is the smallest non-negative integer $\operatorname{Sch}\left(|\psi\rangle, \mathcal{H}_{A}, \mathcal{H}_{B}\right)$ such that $|\psi\rangle$ can be written as

$$
|\psi\rangle=\sum_{j=1}^{\operatorname{Sch}\left(|\psi\rangle, \mathcal{H}_{A}, \mathcal{H}_{B}\right)}\left|\psi_{j}\right\rangle_{A} \otimes\left|\psi_{j}\right\rangle_{B}
$$

where $\left|\psi_{j}\right\rangle_{A} \in \mathcal{H}_{A}$ and $\left|\psi_{j}\right\rangle_{B} \in \mathcal{H}_{B}$. Consequently for

$$
|\psi\rangle=\sum_{j=1}^{\operatorname{dim} \mathcal{H}_{A}} \sum_{k=1}^{\operatorname{dim} \mathcal{H}_{B}} \psi_{j k}|j\rangle_{A} \otimes|k\rangle_{B}
$$

where the $\left|j_{A}\right\rangle$ and $\left|k_{A}\right\rangle$ form an orthonormal basis in their respective Hilbert spaces, we find that

$$
\operatorname{Sch}\left(|\psi\rangle, \mathcal{H}_{A}, \mathcal{H}_{B}\right)=\operatorname{rank}\left(\psi_{j k}\right)
$$

where $\left(\psi_{j k}\right)$ denotes the $\operatorname{dim} \mathcal{H}_{A} \times \operatorname{dim} \mathcal{H}_{B}$ matrix with entries $\psi_{j k}$.

The Hilbert-Schmidt inner product of two linear operators A and B acting on the same Hilbert space \mathcal{H} is given by $(A, B):=\operatorname{Tr}\left(B^{*} A\right)$, where Tr denotes the trace. Thus the linear operators form a Hilbert space with the Hilbert-Schmidt inner product. Consequently the definition of the Schmidt rank for pure states can also be applied to matrices (linear operators).

The Schmidt rank of a linear operator $L: \mathcal{H}_{A} \otimes \mathcal{H}_{B} \rightarrow \mathcal{H}_{A} \otimes \mathcal{H}_{B}$ over $\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ is the smallest non-negative integer $\operatorname{Sch}\left(L, \mathcal{H}_{A}, \mathcal{H}_{B}\right)$ such that L can be written as

$$
L=\sum_{j=1}^{\operatorname{Sch}\left(L, \mathcal{H}_{A}, \mathcal{H}_{B}\right)} L_{j, A} \otimes L_{j, B}
$$

where $L_{j, A}: \mathcal{H}_{A} \rightarrow \mathcal{H}_{A}$ and $L_{j, B}: \mathcal{H}_{B} \rightarrow \mathcal{H}_{B}$ are linear operators.
Nielsen et al found that operators could be written in the operator-Schmidt decomposition [5]:
$L=\sum_{j=1}^{\operatorname{Sch}\left(L, \mathcal{H}_{A}, \mathcal{H}_{B}\right)} s_{j} L_{j, A} \otimes L_{j, B}, \quad s_{j} \neq 0 \quad j=1,2, \ldots, \operatorname{Sch}\left(L, \mathcal{H}_{A}, \mathcal{H}_{B}\right)$
$\left(L_{j, A}, L_{k, A}\right)=\left(L_{j, B}, L_{k, B}\right)=\delta_{j k}, \quad j, k=1,2, \ldots, \operatorname{Sch}\left(L, \mathcal{H}_{A}, \mathcal{H}_{B}\right)$.
This decomposition yields more information about the operator L due to the orthogonality of the operators $L_{j, A}$ and $L_{j, B}$.

For an orthonormal basis $\{|0\rangle,|1\rangle\}$ in $\mathbf{C}^{\mathbf{2}}$ we define the unitary operators:

$$
\begin{aligned}
& U_{\mathrm{NOT}}:=|0\rangle\langle 1|+|1\rangle\langle 0| \\
& U_{\mathrm{NOT}}(1):=U_{\mathrm{NOT}} \otimes I_{2} \\
& U_{\mathrm{NOT}}(2):=I_{2} \otimes U_{\mathrm{NOT}} \\
& U_{\mathrm{CNOT}}(1,2):=|0\rangle\langle 0| \otimes I_{2}+|1\rangle\langle 1| \otimes U_{\mathrm{NOT}} \\
& U_{\mathrm{CNOT}}(2,1):=I_{2} \otimes|0\rangle\langle 0|+U_{\mathrm{NOT}} \otimes|1\rangle\langle 1| \\
& U_{\mathrm{SWAP}}:=|00\rangle\langle 00|+|10\rangle\langle 01|+|01\rangle\langle 10|+|11\rangle\langle 11| .
\end{aligned}
$$

Of course, $U_{\text {SWAP }}$ is composed of three U_{CNOT} operations:

$$
U_{\mathrm{SWAP}}=U_{\mathrm{CNOT}}(2,1) U_{\mathrm{CNOT}}(1,2) U_{\mathrm{CNOT}}(2,1)
$$

This is the XOR implementation of the SWAP operation. This type of decomposition is useful in applications such as communication complexity where it is clear that information must be communicated in both directions to achieve the SWAP operation, whereas the CNOT operation only requires communication in one direction. Thus it would be useful to find a decomposition that illustrates this structure.

2. Operators on $\mathcal{H} \otimes \mathbf{C}^{2}$

Here we consider operators on $\mathcal{H} \otimes \mathbf{C}^{2}$ where \mathcal{H} is an arbitrary finite dimensional Hilbert space with dimension n. Let U_{q} be a unitary operator on $\mathcal{H} \otimes \mathbf{C}^{2}$. We can write U_{q} in the form

$$
U_{q}=Q_{0} \otimes|0\rangle\langle 0|+Q_{1} \otimes|0\rangle\langle 1|+Q_{2} \otimes|1\rangle\langle 0|+Q_{3} \otimes|1\rangle\langle 1|
$$

where Q_{0}, Q_{1}, Q_{2} and Q_{3} are linear operators in \mathcal{H} (some of which may be the zero operator), and $\{|0\rangle,|1\rangle\}$ is an orthonormal basis in \mathbf{C}^{2}. Next we determine the constraints on Q_{0}, Q_{1}, Q_{2} and Q_{3} from the condition $U_{q} U_{q}^{*}=U_{q}^{*} U_{q}=I_{n} \otimes I_{2}$. Since U_{q} is a unitary operator, we have

$$
\begin{aligned}
U_{q} U_{q}^{*}= & \left(Q_{0} Q_{0}^{*}+Q_{1} Q_{1}^{*}\right) \otimes|0\rangle\langle 0|+\left(Q_{0} Q_{2}^{*}+Q_{1} Q_{3}^{*}\right) \otimes|0\rangle\langle 1| \\
& +\left(Q_{2} Q_{2}^{*}+Q_{3} Q_{3}^{*}\right) \otimes|1\rangle\langle 1|+\left(Q_{2} Q_{0}^{*}+Q_{3} Q_{1}^{*}\right) \otimes|1\rangle\langle 0| \\
= & I_{n} \otimes I_{2}=U_{q}^{*} U_{q} .
\end{aligned}
$$

I_{n} denotes the $n \times n$ identity operator and 0_{n} denotes the $n \times n$ zero operator. Thus we find the conditions on the operators Q_{j} :

$$
\begin{array}{ll}
Q_{0} Q_{0}^{*}+Q_{1} Q_{1}^{*}=I_{n} & Q_{0}^{*} Q_{0}+Q_{2}^{*} Q_{2}=I_{n} \\
Q_{2} Q_{2}^{*}+Q_{3} Q_{3}^{*}=I_{n} & Q_{1}^{*} Q_{1}+Q_{3}^{*} Q_{3}=I_{n} \tag{1}\\
Q_{2} Q_{0}^{*}+Q_{3} Q_{1}^{*}=0_{n} & Q_{1}^{*} Q_{0}+Q_{3}^{*} Q_{2}=0_{n}
\end{array}
$$

The operators Q_{0}, Q_{1}, Q_{2} and Q_{3} can be written in polar form $Q_{j}=U_{j} H_{j}$, where U_{j} is unitary and H_{j} is positive semi-definite for $j=0,1,2,3$. Inserting the polar form into equations (1) yields the set of equations

$$
\begin{aligned}
& H_{0}^{2}+H_{2}^{2}=I_{n} \\
& H_{0} H_{2}=-H_{2} H_{0}\left(U_{3}^{*} U_{2}\right)^{*}\left(U_{1}^{*} U_{0}\right) \\
& H_{1}=\left(U_{3}^{*} U_{2}\right) H_{2}\left(U_{3}^{*} U_{2}\right)^{*}=\left(U_{1}^{*} U_{0}\right) H_{2}\left(U_{1}^{*} U_{0}\right)^{*} \\
& H_{3}=\left(U_{3}^{*} U_{2}\right) H_{0}\left(U_{3}^{*} U_{2}\right)^{*}=\left(U_{1}^{*} U_{0}\right) H_{0}\left(U_{1}^{*} U_{0}\right)^{*}
\end{aligned}
$$

We note that if $Q_{1}=0_{n}\left(H_{1}=0_{n}\right)$ then $Q_{2}=0_{n}$. Similarly $Q_{2}=0_{n}$ implies $Q_{1}=0_{n}$ and $Q_{0}=0_{n} \Longleftrightarrow Q_{3}=0_{n}$. In other words, when one of Q_{0}, Q_{1}, Q_{2} and Q_{3} is the zero operator, the non-zero operators of Q_{0}, Q_{1}, Q_{2} and Q_{3} are unitary. This result is independent of the chosen basis $\{|0\rangle,|1\rangle\}$. Thus we find that the Schmidt rank of U_{q} over $\mathcal{H} \otimes \mathbf{C}^{2}$ is either 1,2 or 4. (This result was previously demonstrated by Dür et al [4] and Nielsen et al [5].)

3. Structure

To illustrate the structure further we suppose none of the operators Q_{j} are unitary (Schmidt rank 4 over $\mathcal{H} \otimes \mathbf{C}^{2}$); in other words, the operators Q_{0}, Q_{1}, Q_{2} and Q_{3} are linearly independent. The operators Q_{0}, Q_{1}, Q_{2} and Q_{3} span a four-dimensional vector space which is isomorphic to the space spanned by $\{|0\rangle\langle 0|,|0\rangle\langle 1|,|1\rangle\langle 0|,|1\rangle\langle 1|\}$. The operators $\{|0\rangle\langle 0|,|0\rangle\langle 1|,|1\rangle\langle 0|,|1\rangle\langle 1|\}$ are linearly independent, with the matrix representations in the standard basis $\{|0\rangle,|1\rangle\}$ of \mathbf{C}^{2}

$$
\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

The vector space isomorphisms which do not violate the conditions (1) are as follows:

> (1) $Q_{0} \rightarrow|0\rangle\langle 0|, \quad Q_{1} \rightarrow|1\rangle\langle 0|, \quad Q_{2} \rightarrow|0\rangle\langle 1|, \quad Q_{3} \rightarrow|1\rangle\langle 1|$ $\rightarrow U_{\text {SWAP }}$
> (2) $Q_{0} \rightarrow|1\rangle\langle 0|, \quad Q_{1} \rightarrow|0\rangle\langle 0|$,
> $Q_{2} \rightarrow|1\rangle\langle 1|, \quad Q_{3} \rightarrow|0\rangle\langle 1|$
> $\rightarrow U_{\text {NOT }}(1) U_{\text {SWAP }}$
> (3) $Q_{0} \rightarrow|0\rangle\langle 1|, \quad Q_{1} \rightarrow|1\rangle\langle 1|, \quad Q_{2} \rightarrow|0\rangle\langle 0|, \quad Q_{3} \rightarrow|1\rangle\langle 0|$ $\rightarrow U_{\mathrm{NOT}}(2) U_{\mathrm{SWAP}}$
> (4) $Q_{0} \rightarrow|1\rangle\langle 1|, \quad Q_{1} \rightarrow|0\rangle\langle 1|, \quad Q_{2} \rightarrow|1\rangle\langle 0|, \quad Q_{3} \rightarrow|0\rangle\langle 0|$ $\rightarrow U_{\text {NOT }}(1) U_{\text {NOT }}(2) U_{\text {SWAP }}$
> (5) $Q_{0} \rightarrow|0\rangle\langle 0|, \quad Q_{1} \rightarrow|1\rangle\langle 1|, \quad Q_{2} \rightarrow|0\rangle\langle 1|, \quad Q_{3} \rightarrow|1\rangle\langle 0|$ $\rightarrow U_{\text {CNOT }}(1,2) U_{\text {SWAP }}$
> (6) $Q_{0} \rightarrow|1\rangle\langle 0|, \quad Q_{1} \rightarrow|0\rangle\langle 1|$,
> $Q_{2} \rightarrow|1\rangle\langle 1|, \quad Q_{3} \rightarrow|0\rangle\langle 0|$
> $\rightarrow U_{\mathrm{NOT}}(1) U_{\mathrm{CNOT}}(1,2) U_{\mathrm{SWAP}}$
> (7) $Q_{0} \rightarrow|0\rangle\langle 1|, \quad Q_{1} \rightarrow|1\rangle\langle 0|, \quad Q_{2} \rightarrow|0\rangle\langle 0|, \quad Q_{3} \rightarrow|1\rangle\langle 1|$ $\rightarrow U_{\text {NOT }}(2) U_{\mathrm{CNOT}}(1,2) U_{\mathrm{SWAP}}$
(8) $Q_{0} \rightarrow|1\rangle\langle 1|, \quad Q_{1} \rightarrow|0\rangle\langle 0|, \quad Q_{2} \rightarrow|1\rangle\langle 0|, \quad Q_{3} \rightarrow|0\rangle\langle 1|$ $\rightarrow U_{\mathrm{NOT}}(1) U_{\mathrm{NOT}}(2) U_{\mathrm{CNOT}}(1,2) U_{\mathrm{SWAP}}$
(9) $Q_{0} \rightarrow|0\rangle\langle 0|, \quad Q_{1} \rightarrow|1\rangle\langle 0|, \quad Q_{2} \rightarrow|1\rangle\langle 1|, \quad Q_{3} \rightarrow|0\rangle\langle 1|$ $\rightarrow U_{\mathrm{CNOT}}(2,1) U_{\text {SWAP }}$
(10) $Q_{0} \rightarrow|1\rangle\langle 0|, \quad Q_{1} \rightarrow|0\rangle\langle 0|, \quad Q_{2} \rightarrow|0\rangle\langle 1|, \quad Q_{3} \rightarrow|1\rangle\langle 1|$ $\rightarrow U_{\text {NOT }}(1) U_{\mathrm{CNOT}}(2,1) U_{\mathrm{SWAP}}$
(11) $Q_{0} \rightarrow|1\rangle\langle 1|, \quad Q_{1} \rightarrow|0\rangle\langle 1|, \quad Q_{2} \rightarrow|0\rangle\langle 0|, \quad Q_{3} \rightarrow|1\rangle\langle 0|$ $\rightarrow U_{\mathrm{NOT}}(2) U_{\mathrm{CNOT}}(2,1) U_{\mathrm{SWAP}}$
(12) $Q_{0} \rightarrow|0\rangle\langle 1|, \quad Q_{1} \rightarrow|1\rangle\langle 1|, \quad Q_{2} \rightarrow|1\rangle\langle 0|, \quad Q_{3} \rightarrow|0\rangle\langle 0|$. $\rightarrow U_{\text {NOT }}(1) U_{\text {NOT }}(2) U_{\mathrm{CNOT}}(2,1) U_{\mathrm{SWAP}}$.

The only non-local unitary operators are described in terms of $U_{\text {SWAP }}$ or $U_{\text {CNOT }}$. Dür et al similarly found that 2 qubit operations could be classified in terms of equivalence classes characterized by local unitary, $U_{\text {SWAP }}$ and U_{CNOT} operations [4]. This structure is apparent in a restricted class of unitary operators described below.

4. Decomposing the SWAP gate

Now consider the restricted class of unitary operators with $Q_{j}=U_{j} \Pi_{j}$ where U_{j} is unitary and Π_{j} is a projection operator for $j=0,1,2,3$. This is a special case of the polar decomposition of Q_{j}. Inserting these assumptions into equations (1) yields

$$
\begin{aligned}
& \Pi_{0}+\Pi_{2}=I_{n} \\
& \Pi_{1}=\left(U_{3}^{*} U_{2}\right) \Pi_{2}\left(U_{3}^{*} U_{2}\right)^{*}=\left(U_{1}^{*} U_{0}\right) \Pi_{2}\left(U_{1}^{*} U_{0}\right)^{*} \\
& \Pi_{3}=\left(U_{3}^{*} U_{2}\right) \Pi_{0}\left(U_{3}^{*} U_{2}\right)^{*}=\left(U_{1}^{*} U_{0}\right) \Pi_{0}\left(U_{1}^{*} U_{0}\right)^{*}
\end{aligned}
$$

Consequently we also find

$$
\Pi_{0} \Pi_{2}=\Pi_{0}\left(I_{n}-\Pi_{0}\right)=0_{n}
$$

Thus Π_{0} and Π_{2} decompose the Hilbert space \mathcal{H} into two orthogonal subspaces. Additionally, Π_{1} and Π_{3} also decompose \mathcal{H} into two orthogonal subspaces and is equivalent to the decomposition given by $\left\{\Pi_{0}, \Pi_{2}\right\}$ under the unitary transformation $U_{1}^{*} U_{0}$ (or $U_{3}^{*} U_{2}$). This allows us to decompose U_{q} as a product of three operators each of Schmidt rank not greater than 2:

$$
\begin{aligned}
U_{q}= & U_{0} \Pi_{0} \otimes|0\rangle\langle 0|+U_{1} \Pi_{1} \otimes|0\rangle\langle 1|+U_{2} \Pi_{2} \otimes|1\rangle\langle 0|+U_{3} \Pi_{3} \otimes|1\rangle\langle 1| \\
= & U_{0} \Pi_{0} \otimes|0\rangle\langle 0|+U_{0} \Pi_{2} U_{0}^{*} U_{1} \otimes|0\rangle\langle 1|+U_{2} \Pi_{2} \otimes|1\rangle\langle 0|+U_{2} \Pi_{0} U_{2}^{*} U_{3} \otimes|1\rangle\langle 1| \\
= & \left(U_{0} \otimes|0\rangle\langle 0|+U_{2} \otimes|1\rangle\langle 1|\right)\left(\Pi_{0} \otimes I_{2}+\Pi_{2} \otimes U_{\mathrm{NOT}}\right) \\
& \times\left(I_{n} \otimes|0\rangle\langle 0|+\left[\Pi_{0} U_{2}^{*} U_{3}+\Pi_{2} U_{0}^{*} U_{1}\right] \otimes|1\rangle\langle 1|\right) .
\end{aligned}
$$

The operator $\Pi_{0} U_{2}^{*} U_{3}+\Pi_{2} U_{0}^{*} U_{1}$ is obviously unitary. The decomposition has the interpretation of an exchange of information (1 qubit) from the Hilbert space \mathbf{C}^{2} described by the projection operators $\{|0\rangle\langle 0|,|1\rangle\langle 1|\}$ and the Hilbert space \mathcal{H} described by the projection operators $\left\{\Pi_{0}, \Pi_{2}\right\}$.

The operator $U_{\text {SWAP }}$ has $U_{0}=U_{3}=I_{2}, U_{1}=U_{2}=U_{\mathrm{NOT}}, \Pi_{0}=\Pi_{1}=|0\rangle\langle 0|$ and $\Pi_{2}=\Pi_{3}=|1\rangle\langle 1|$. Consequently

$$
\begin{aligned}
U_{\mathrm{SWAP}}= & \left(I_{2} \otimes|0\rangle\langle 0|+U_{\mathrm{NOT}} \otimes|1\rangle\langle 1|\right)\left(|0\rangle\langle 0| \otimes I_{2}+|1\rangle\langle 1| \otimes U_{\mathrm{NOT}}\right) \\
& \times\left(I \otimes|0\rangle\langle 0|+\left[|0\rangle\langle 0| U_{\mathrm{NOT}}+|1\rangle\langle 1| U_{\mathrm{NOT}}\right] \otimes|1\rangle\langle 1|\right) \\
= & U_{\mathrm{CNOT}}(2,1) U_{\mathrm{CNOT}}(1,2) U_{\mathrm{CNOT}}(2,1)
\end{aligned}
$$

that is, we derived the XOR implementation of SWAP.

References

[1] Steeb W-H 1998 Hilbert Spaces, Wavelets, Generalised Functions and Modern Quantum Mechanics (Dordrecht: Kluwer)
[2] Steeb W-H and Hardy Y 2006 Problems and Solutions in Quantum Computing and Quantum Information 2nd edn (Singapore: World Scientific)
[3] Nielsen M A and Chuang I L 2002 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[4] Dür W, Vidal G and Cirac J I 2002 Optimal conversion of nonlocal unitary operations Phys. Rev. Lett. 89057901
[5] Nielsen M A, Dawson C M, Dodd J L, Gilchrist A, Mortimer D, Osborne T J, Bremner M J, Harrow A W and Hines A 2003 Quantum dynamics as a physical resource Phys. Rev. A 67052301

