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Abstract
Quantum gates are represented by unitary operators on a Hilbert space. We
consider the unitary operators on H⊗C2 and describe the component operators
on each Hilbert space in the product space. From these criteria we derive a
decomposition for a specific class of unitary operators such that each operator
in the product has Schmidt rank bounded by 2. This decomposition directly
yields the XOR (controlled NOT) implementation of the SWAP operation.

PACS numbers: 03.65.Db, 03.67.−a

1. Introduction

Quantum gates are represented by unitary operators on a Hilbert space [1–3]. For
completeness, we present the definitions of the Schmidt rank for states and operators below.

Let HA and HB be two finite dimensional Hilbert spaces with the underlying field C. Let
|ψ〉 denote a pure state in the Hilbert space HA ⊗ HB .

The Schmidt number (also called the Schmidt rank) of |ψ〉 ∈ HA ⊗HB over HA ⊗HB is
the smallest non-negative integer Sch(|ψ〉,HA,HB) such that |ψ〉 can be written as

|ψ〉 =
Sch(|ψ〉,HA,HB)∑

j=1

|ψj 〉A ⊗ |ψj 〉B

where |ψj 〉A ∈ HA and |ψj 〉B ∈ HB . Consequently for

|ψ〉 =
dimHA∑
j=1

dimHB∑
k=1

ψjk|j 〉A ⊗ |k〉B,

where the |jA〉 and |kA〉 form an orthonormal basis in their respective Hilbert spaces, we find
that

Sch(|ψ〉,HA,HB) = rank(ψjk)

where (ψjk) denotes the dimHA × dimHB matrix with entries ψjk .
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The Hilbert–Schmidt inner product of two linear operators A and B acting on the same
Hilbert space H is given by (A,B) := Tr(B∗A), where Tr denotes the trace. Thus the linear
operators form a Hilbert space with the Hilbert–Schmidt inner product. Consequently the
definition of the Schmidt rank for pure states can also be applied to matrices (linear operators).

The Schmidt rank of a linear operator L : HA ⊗ HB → HA ⊗ HB over HA ⊗ HB is the
smallest non-negative integer Sch(L,HA,HB) such that L can be written as

L =
Sch(L,HA,HB)∑

j=1

Lj,A ⊗ Lj,B

where Lj,A : HA → HA and Lj,B : HB → HB are linear operators.
Nielsen et al found that operators could be written in the operator-Schmidt decomposition

[5]:

L =
Sch(L,HA,HB)∑

j=1

sjLj,A ⊗ Lj,B, sj �= 0 j = 1, 2, . . . , Sch(L,HA,HB)

(Lj,A, Lk,A) = (Lj,B, Lk,B) = δjk, j, k = 1, 2, . . . , Sch(L,HA,HB).

This decomposition yields more information about the operator L due to the orthogonality of
the operators Lj,A and Lj,B .

For an orthonormal basis {|0〉, |1〉} in C2 we define the unitary operators:

UNOT := |0〉〈1| + |1〉〈0|
UNOT(1) := UNOT ⊗ I2

UNOT(2) := I2 ⊗ UNOT

UCNOT(1, 2) := |0〉〈0| ⊗ I2 + |1〉〈1| ⊗ UNOT

UCNOT(2, 1) := I2 ⊗ |0〉〈0| + UNOT ⊗ |1〉〈1|
USWAP := |00〉〈00| + |10〉〈01| + |01〉〈10| + |11〉〈11|.

Of course, USWAP is composed of three UCNOT operations:

USWAP = UCNOT(2, 1)UCNOT(1, 2)UCNOT(2, 1).

This is the XOR implementation of the SWAP operation. This type of decomposition is
useful in applications such as communication complexity where it is clear that information
must be communicated in both directions to achieve the SWAP operation, whereas the CNOT
operation only requires communication in one direction. Thus it would be useful to find a
decomposition that illustrates this structure.

2. Operators on H ⊗ C2

Here we consider operators on H ⊗ C2 where H is an arbitrary finite dimensional Hilbert
space with dimension n. Let Uq be a unitary operator on H⊗C2. We can write Uq in the form

Uq = Q0 ⊗ |0〉〈0| + Q1 ⊗ |0〉〈1| + Q2 ⊗ |1〉〈0| + Q3 ⊗ |1〉〈1|
where Q0,Q1,Q2 and Q3 are linear operators in H (some of which may be the zero operator),
and {|0〉, |1〉} is an orthonormal basis in C2. Next we determine the constraints on Q0,Q1,Q2

and Q3 from the condition UqU
∗
q = U ∗

q Uq = In ⊗ I2. Since Uq is a unitary operator, we have

UqU
∗
q = (Q0Q

∗
0 + Q1Q

∗
1) ⊗ |0〉〈0| + (Q0Q

∗
2 + Q1Q

∗
3) ⊗ |0〉〈1|

+ (Q2Q
∗
2 + Q3Q

∗
3) ⊗ |1〉〈1| + (Q2Q

∗
0 + Q3Q

∗
1) ⊗ |1〉〈0|

= In ⊗ I2 = U ∗
q Uq.
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In denotes the n × n identity operator and 0n denotes the n × n zero operator. Thus we find
the conditions on the operators Qj :

Q0Q
∗
0 + Q1Q

∗
1 = In Q∗

0Q0 + Q∗
2Q2 = In

Q2Q
∗
2 + Q3Q

∗
3 = In Q∗

1Q1 + Q∗
3Q3 = In (1)

Q2Q
∗
0 + Q3Q

∗
1 = 0n Q∗

1Q0 + Q∗
3Q2 = 0n.

The operators Q0,Q1,Q2 and Q3 can be written in polar form Qj = UjHj , where Uj

is unitary and Hj is positive semi-definite for j = 0, 1, 2, 3. Inserting the polar form into
equations (1) yields the set of equations

H 2
0 + H 2

2 = In

H0H2 = −H2H0(U
∗
3 U2)

∗(U ∗
1 U0)

H1 = (U ∗
3 U2)H2(U

∗
3 U2)

∗ = (U ∗
1 U0)H2(U

∗
1 U0)

∗

H3 = (U ∗
3 U2)H0(U

∗
3 U2)

∗ = (U ∗
1 U0)H0(U

∗
1 U0)

∗.

We note that if Q1 = 0n (H1 = 0n) then Q2 = 0n. Similarly Q2 = 0n implies Q1 = 0n

and Q0 = 0n ⇐⇒ Q3 = 0n. In other words, when one of Q0,Q1,Q2 and Q3 is the zero
operator, the non-zero operators of Q0,Q1,Q2 and Q3 are unitary. This result is independent
of the chosen basis {|0〉, |1〉}. Thus we find that the Schmidt rank of Uq over H ⊗ C2 is either
1, 2 or 4. (This result was previously demonstrated by Dür et al [4] and Nielsen et al [5].)

3. Structure

To illustrate the structure further we suppose none of the operators Qj are unitary (Schmidt
rank 4 over H ⊗ C2); in other words, the operators Q0,Q1,Q2 and Q3 are linearly
independent. The operators Q0, Q1,Q2 and Q3 span a four-dimensional vector space
which is isomorphic to the space spanned by {|0〉〈0|, |0〉〈1|, |1〉〈0|, |1〉〈1|}. The operators
{|0〉〈0|, |0〉〈1|, |1〉〈0|, |1〉〈1|} are linearly independent, with the matrix representations in the
standard basis {|0〉, |1〉} of C2

{(
1 0
0 0

)
,

(
0 1
0 0

)
,

(
0 0
1 0

)
,

(
0 0
0 1

)}
.

The vector space isomorphisms which do not violate the conditions (1) are as follows:

(1) Q0 → |0〉〈0|, Q1 → |1〉〈0|, Q2 → |0〉〈1|, Q3 → |1〉〈1|
→ USWAP

(2) Q0 → |1〉〈0|, Q1 → |0〉〈0|, Q2 → |1〉〈1|, Q3 → |0〉〈1|
→ UNOT(1)USWAP

(3) Q0 → |0〉〈1|, Q1 → |1〉〈1|, Q2 → |0〉〈0|, Q3 → |1〉〈0|
→ UNOT(2)USWAP

(4) Q0 → |1〉〈1|, Q1 → |0〉〈1|, Q2 → |1〉〈0|, Q3 → |0〉〈0|
→ UNOT(1)UNOT(2)USWAP

(5) Q0 → |0〉〈0|, Q1 → |1〉〈1|, Q2 → |0〉〈1|, Q3 → |1〉〈0|
→ UCNOT(1, 2)USWAP

(6) Q0 → |1〉〈0|, Q1 → |0〉〈1|, Q2 → |1〉〈1|, Q3 → |0〉〈0|
→ UNOT(1)UCNOT(1, 2)USWAP

(7) Q0 → |0〉〈1|, Q1 → |1〉〈0|, Q2 → |0〉〈0|, Q3 → |1〉〈1|
→ UNOT(2)UCNOT(1, 2)USWAP
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(8) Q0 → |1〉〈1|, Q1 → |0〉〈0|, Q2 → |1〉〈0|, Q3 → |0〉〈1|
→ UNOT(1)UNOT(2)UCNOT(1, 2)USWAP

(9) Q0 → |0〉〈0|, Q1 → |1〉〈0|, Q2 → |1〉〈1|, Q3 → |0〉〈1|
→ UCNOT(2, 1)USWAP

(10) Q0 → |1〉〈0|, Q1 → |0〉〈0|, Q2 → |0〉〈1|, Q3 → |1〉〈1|
→ UNOT(1)UCNOT(2, 1)USWAP

(11) Q0 → |1〉〈1|, Q1 → |0〉〈1|, Q2 → |0〉〈0|, Q3 → |1〉〈0|
→ UNOT(2)UCNOT(2, 1)USWAP

(12) Q0 → |0〉〈1|, Q1 → |1〉〈1|, Q2 → |1〉〈0|, Q3 → |0〉〈0|.
→ UNOT(1)UNOT(2)UCNOT(2, 1)USWAP.

The only non-local unitary operators are described in terms of USWAP or UCNOT. Dür
et al similarly found that 2 qubit operations could be classified in terms of equivalence classes
characterized by local unitary, USWAP and UCNOT operations [4]. This structure is apparent in
a restricted class of unitary operators described below.

4. Decomposing the SWAP gate

Now consider the restricted class of unitary operators with Qj = Uj�j where Uj is unitary and
�j is a projection operator for j = 0, 1, 2, 3. This is a special case of the polar decomposition
of Qj . Inserting these assumptions into equations (1) yields

�0 + �2 = In

�1 = (U ∗
3 U2)�2(U

∗
3 U2)

∗ = (U ∗
1 U0)�2(U

∗
1 U0)

∗

�3 = (U ∗
3 U2)�0(U

∗
3 U2)

∗ = (U ∗
1 U0)�0(U

∗
1 U0)

∗.

Consequently we also find

�0�2 = �0(In − �0) = 0n.

Thus �0 and �2 decompose the Hilbert space H into two orthogonal subspaces. Additionally,
�1 and �3 also decompose H into two orthogonal subspaces and is equivalent to the
decomposition given by {�0,�2} under the unitary transformation U ∗

1 U0 (or U ∗
3 U2). This

allows us to decompose Uq as a product of three operators each of Schmidt rank not greater
than 2:

Uq = U0�0 ⊗ |0〉〈0| + U1�1 ⊗ |0〉〈1| + U2�2 ⊗ |1〉〈0| + U3�3 ⊗ |1〉〈1|
= U0�0 ⊗ |0〉〈0| + U0�2U

∗
0 U1 ⊗ |0〉〈1| + U2�2 ⊗ |1〉〈0| + U2�0U

∗
2 U3 ⊗ |1〉〈1|

= (U0 ⊗ |0〉〈0| + U2 ⊗ |1〉〈1|)(�0 ⊗ I2 + �2 ⊗ UNOT)

× (In ⊗ |0〉〈0| + [�0U
∗
2 U3 + �2U

∗
0 U1] ⊗ |1〉〈1|).

The operator �0U
∗
2 U3 + �2U

∗
0 U1 is obviously unitary. The decomposition has the

interpretation of an exchange of information (1 qubit) from the Hilbert space C2 described by
the projection operators {|0〉〈0|, |1〉〈1|} and the Hilbert space H described by the projection
operators {�0,�2}.

The operator USWAP has U0 = U3 = I2, U1 = U2 = UNOT,�0 = �1 = |0〉〈0| and
�2 = �3 = |1〉〈1|. Consequently

USWAP = (I2 ⊗ |0〉〈0| + UNOT ⊗ |1〉〈1|)(|0〉〈0| ⊗ I2 + |1〉〈1| ⊗ UNOT)

× (I ⊗ |0〉〈0| + [|0〉〈0|UNOT + |1〉〈1|UNOT] ⊗ |1〉〈1|)
= UCNOT(2, 1)UCNOT(1, 2)UCNOT(2, 1);

that is, we derived the XOR implementation of SWAP.
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